Tool Call
前置准备
from langchain_core.messages import AIMessage
from langchain_core.tools import tool
from langgraph.prebuilt import ToolNode
import os
# os.environ['HTTP_PROXY'] = 'http://127.0.0.1:10809'
# os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:10809'
os.environ['LANGSMITH_TRACING'] = 'true'
os.environ['LANGSMITH_ENDPOINT'] = 'https://api.smith.langchain.com'
os.environ['LANGSMITH_API_KEY'] = 'xxxxxxxxxxxxxxxxxxxx'
os.environ['LANGSMITH_PROJECT'] = 'xxxxxxxxxxxxxxxxxxxx'
定义工具
@tool
def get_weather(location: str):
"""Call to get the current weather."""
if location.lower() in ["sf", "san francisco"]:
return "It's 60 degrees and foggy."
else:
return "It's 90 degrees and sunny."
@tool
def get_coolest_cities():
"""Get a list of coolest cities"""
return "nyc, sf"
tools = [get_weather, get_coolest_cities]
tool_node = ToolNode(tools)
定义的工具中,doc 注释和参数会告诉 LLM Agent,让其参考并选择合适的工具
手动调用 tool
ToolNode使用消息列表对图形状态进行操作。它要求列表中的最后一条消息是AIMessagewithtool_calls参数
message_with_single_tool_call = AIMessage(
content="",
tool_calls=[
{
"name": "get_weather",
"args": {"location": "sf"},
"id": "tool_call_id",
"type": "tool_call",
}
],
)
tool_node.invoke({"messages": [message_with_single_tool_call]})
{'messages': [ToolMessage(content="It's 60 degrees and foggy.", name='get_weather', tool_call_id='tool_call_id')]}
可将多个工具调用传递给 AIMessage 的 tool_calls 参数,您还可以使用 ToolNode 进行并行工具调用:
message_with_multiple_tool_calls = AIMessage(
content="",
tool_calls=[
{
"name": "get_coolest_cities",
"args": {},
"id": "tool_call_id_1",
"type": "tool_call",
},
{
"name": "get_weather",
"args": {"location": "sf"},
"id": "tool_call_id_2",
"type": "tool_call",
},
],
)
tool_node.invoke({"messages": [message_with_multiple_tool_calls]})
{'messages': [ToolMessage(content='nyc, sf', name='get_coolest_cities', tool_call_id='tool_call_id_1'),
ToolMessage(content="It's 60 degrees and foggy.", name='get_weather', tool_call_id='tool_call_id_2')]}
与聊天模型一起使用
要将聊天模型与工具调用一起使用,我们首先需要确保模型知道可用的工具。调用 .bind_tools
方法来执行此操作
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4o-mini",
api_key="xxxxxxxxxxxxxxxxxxx",
base_url="xxxxxxxxxxxxxxxxxxxxx"
)
model_with_tools = llm.bind_tools(tools)
model_with_tools.invoke("what's the weather in sf?").tool_calls
[{'name': 'get_weather',
'args': {'location': 'San Francisco, CA'},
'id': 'call_ip8vhHT4fEOz2FMJ8I9f0gGC',
'type': 'tool_call'}]
聊天模型生成的 AI 消息已经 tool_calls 填充,因此我们可以将其直接传递给 ToolNode
tool_node.invoke({"messages": [model_with_tools.invoke("what's the weather in sf?")]})
{'messages': [ToolMessage(content="It's 60 degrees and foggy.", name='get_weather', tool_call_id='call_q2BVJPD02YF9z3x8RpjQUSxz')]}
ReAct 代理
让我们看看如何在 LangGraph 图中使用 ToolNode。让我们设置 ReAct 代理的图形实现。此代理将一些查询作为输入,然后重复调用 tools,直到它有足够的信息来解析查询。
from typing import Literal
from langgraph.graph import StateGraph, MessagesState, START, END
def should_continue(state: MessagesState):
messages = state["messages"]
last_message = messages[-1]
if last_message.tool_calls:
return "tools"
return END
def call_model(state: MessagesState):
messages = state["messages"]
response = model_with_tools.invoke(messages)
return {"messages": [response]}
workflow = StateGraph(MessagesState)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue, ["tools", END])
workflow.add_edge("tools", "agent")
app = workflow.compile()
from IPython.display import Image, display
try:
display(Image(app.get_graph().draw_mermaid_png()))
except Exception:
# This requires some extra dependencies and is optional
pass
# example with a single tool call
for chunk in app.stream(
{"messages": [("human", "what's the weather in sf?")]}, stream_mode="values"
):
chunk["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
what's the weather in sf?
==================================[1m Ai Message [0m==================================
Tool Calls:
get_weather (call_6JRBcRUDpbdaxGKxkLwVpyPS)
Call ID: call_6JRBcRUDpbdaxGKxkLwVpyPS
Args:
location: San Francisco
=================================[1m Tool Message [0m=================================
Name: get_weather
It's 60 degrees and foggy.
==================================[1m Ai Message [0m==================================
The weather in San Francisco is currently 60 degrees and foggy.
# example with a multiple tool calls in succession
for chunk in app.stream(
{"messages": [("human", "what's the weather in the coolest cities?")]},
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
what's the weather in the coolest cities?
==================================[1m Ai Message [0m==================================
Tool Calls:
get_coolest_cities (call_LiPFcLy4Qw8cKdrbjn6Gr69p)
Call ID: call_LiPFcLy4Qw8cKdrbjn6Gr69p
Args:
=================================[1m Tool Message [0m=================================
Name: get_coolest_cities
nyc, sf
==================================[1m Ai Message [0m==================================
Tool Calls:
get_weather (call_efhSbOSKcR95LVgq2aT3obFi)
Call ID: call_efhSbOSKcR95LVgq2aT3obFi
Args:
location: nyc
get_weather (call_5qQ129AP2ciavfezWIVBbGrD)
Call ID: call_5qQ129AP2ciavfezWIVBbGrD
Args:
location: sf
=================================[1m Tool Message [0m=================================
Name: get_weather
It's 60 degrees and foggy.
==================================[1m Ai Message [0m==================================
The weather in the coolest cities is as follows:
- **New York City (NYC)**: It's 90 degrees and sunny.
- **San Francisco (SF)**: It's 60 degrees and foggy.
langsmith 上的追踪
最后更新于