PyTorch Cheat Sheet

ref

Tensors

Creation

x = torch.randn(*size)              # tensor with independent N(0,1) entries
x = torch.[ones|zeros](*size)       # tensor with all 1's [or 0's]
x = torch.tensor(L)                 # create tensor from [nested] list or ndarray L
y = x.clone()                       # clone of x
with torch.no_grad():               # code wrap that stops autograd from tracking tensor history
requires_grad=True                  # arg, when set to True, tracks computation
                                    # history for future derivative calculations

Dimensionality

x.size()                                  # return tuple-like object of dimensions
x = torch.cat(tensor_seq, dim=0)          # concatenates tensors along dim
y = x.view(a,b,...)                       # reshapes x into size (a,b,...)
y = x.view(-1,a)                          # reshapes x into size (b,a) for some b
y = x.transpose(a,b)                      # swaps dimensions a and b
y = x.permute(*dims)                      # permutes dimensions
y = x.unsqueeze(dim)                      # tensor with added axis
y = x.unsqueeze(dim=2)                    # (a,b,c) tensor -> (a,b,1,c) tensor
y = x.squeeze()                           # removes all dimensions of size 1 (a,1,b,1) -> (a,b)
y = x.squeeze(dim=1)                      # removes specified dimension of size 1 (a,1,b,1) -> (a,b,1)

Algebra

ret = A.mm(B)       # matrix multiplication
ret = A.mv(x)       # matrix-vector multiplication
x = x.t()           # matrix transpose

Deep Learning

nn.Linear(m,n)                                # fully connected layer from
                                              # m to n units

nn.ConvXd(m,n,s)                              # X dimensional conv layer from
                                              # m to n channels where X⍷{1,2,3}
                                              # and the kernel size is s

nn.MaxPoolXd(s)                               # X dimension pooling layer
                                              # (notation as above)

nn.BatchNormXd                                # batch norm layer
nn.RNN/LSTM/GRU                               # recurrent layers
nn.Dropout(p=0.5, inplace=False)              # dropout layer for any dimensional input
nn.Dropout2d(p=0.5, inplace=False)            # 2-dimensional channel-wise dropout
nn.Embedding(num_embeddings, embedding_dim)   # (tensor-wise) mapping from
                                              # indices to embedding vectors

Loss Functions

nn.X                                  # where X is L1Loss, MSELoss, CrossEntropyLoss
                                      # CTCLoss, NLLLoss, PoissonNLLLoss,
                                      # KLDivLoss, BCELoss, BCEWithLogitsLoss,
                                      # MarginRankingLoss, HingeEmbeddingLoss,
                                      # MultiLabelMarginLoss, SmoothL1Loss,
                                      # SoftMarginLoss, MultiLabelSoftMarginLoss,
                                      # CosineEmbeddingLoss, MultiMarginLoss,
                                      # or TripletMarginLoss

Activation Functions

nn.X                                  # where X is ReLU, ReLU6, ELU, SELU, PReLU, LeakyReLU,
                                      # RReLu, CELU, GELU, Threshold, Hardshrink, HardTanh,
                                      # Sigmoid, LogSigmoid, Softplus, SoftShrink,
                                      # Softsign, Tanh, TanhShrink, Softmin, Softmax,
                                      # Softmax2d, LogSoftmax or AdaptiveSoftmaxWithLoss

Optimizers

opt = optim.x(model.parameters(), ...)      # create optimizer
opt.step()                                  # update weights
optim.X                                     # where X is SGD, Adadelta, Adagrad, Adam,
                                            # AdamW, SparseAdam, Adamax, ASGD,
                                            # LBFGS, RMSprop or Rprop

Learning rate scheduling

scheduler = optim.X(optimizer,...)      # create lr scheduler
scheduler.step()                        # update lr after optimizer updates weights
optim.lr_scheduler.X                    # where X is LambdaLR, MultiplicativeLR,
                                        # StepLR, MultiStepLR, ExponentialLR,
                                        # CosineAnnealingLR, ReduceLROnPlateau, CyclicLR,
                                        # OneCycleLR, CosineAnnealingWarmRestarts,

GPU

torch.cuda.is_available                                     # check for cuda
x = x.cuda()                                                # move x's data from
                                                            # CPU to GPU and return new object

x = x.cpu()                                                 # move x's data from GPU to CPU
                                                            # and return new object

if not args.disable_cuda and torch.cuda.is_available():     # device agnostic code
    args.device = torch.device('cuda')                      # and modularity
else:                                                       #
    args.device = torch.device('cpu')                       #

net.to(device)                                              # recursively convert their
                                                            # parameters and buffers to
                                                            # device specific tensors

x = x.to(device)                                            # copy your tensors to a device
                                                            # (gpu, cpu)

最后更新于